Warning: ini_set(): A session is active. You cannot change the session module's ini settings at this time in /home/aetjapan/aetjapan.com/public_html/home/book.php on line 4
AET,Inc

Correlation Spectroscopy of Surfaces, Thin Films, and Nanostructures

¥ 20,300
著 者:Jamal Berakdar, Jurgen Kirschner
出 版:Wiley   /   2004年
ISBN:3-527-40477-5

表面、薄膜、ナノ構造における電気的な相関関係について学ぶために、本書では実験上および理論上での最新方法論について紹介しています。特に多粒子の相関関係を学習するために同時発生技術について詳述し、同時発生プロセスの情報内容を理論的な視点からじっくりと検討しています。理論的なアプローチに多体効果を取り入れるという最新動向も考慮されています。

  • オージェ電子光電子同時発生の実験と理論
  • 原子、フラーレン、クラスター、メタル、ワイドバンド・ギャップ材料からの相関電子放出
  • 表面からのイオンの同時発生分光法とイオン拡散の理論
  • GWおよび動的な中間分野アプローチ
  • 電子および光学反応における多体効果

Preface.

List of Contributors.

1 A First-Principles Scheme for Calculating the Electronic Structure of Strongly Correlated Materials: GW+DMFT ((F. Aryasetiawan, S. Biermann, and A. Georges).
1.1 Introduction.
1.2 The GW Approximation.
1.2.1 Theory.
1.2.2 The GW Approximation in Practice.
1.3 Dynamical Mean Field Theory.
1.3.1 DMFT in Practice.
1.4 GW+DMFT.
1.4.1 Simplified Implementation of GW+DMFT and Application to Ferromagnetic Nickel.
1.5 Conclusions.
References.
2 A Many-body Approach to the Electronic and Optical Properties of Copper and Silver (A. Marini).
2.1 Introduction.
2.2 Quasi particle Electronic Structure of Copper.
2.3 The Plasmon Resonance of Silver.
2.4 Dynamical Excitonic Effects in Metals.
2.5 Conclusions.
References.
3 Correlation Spectroscopy of Nano-size Materials (O. Kidun, N. Fominykh, and J. Berakdar). 3.1 Introduction.
3.2 Generalities.
3.3 Excitations in Finite Systems:Role of the Electron-Electron Interaction.
3.3.1 Formal Development.
3.4 Results and Discussion.
3.5 Conclusions.
References.
4 Electron-Electron Coincidence Studies on Atomic Targets: A Review of (e,2e) and (e,3e) Experiments (A. Lahmam-Bennani).
4.1 Introduction.
4.2 Structure Studies.
4.3 Dynamics Studies.
4.3.1 The Optical Limit.
4.3.2 Dynamics Studies at Intermediate Energies and Intermediate Momentum Transfer.
4.4 Conclusion.
References.
5 Studying the Details of the Electron-Electron Interaction in Solids and Surfaces
(J. Kirschner, C. Winkler, and J. Berakdar).
5.1 Introduction.
5.2 General Considerations.
5.3 Results and Interpretations.
5.4 Conclusions.
References.
6 Two-Electron Spectroscopy Versus Single-Electron Spectroscopy for Studying Secondary Emission from Surfaces (S. Samarin, O.M. Artamonov, A.D. Sergeant, and J.F. Williams).
6.1 Introduction.
6.2 Experimental Details of the Time-of-Flight (e,2e) Spectroscopy in Reflection Mode.
6.2.1 Experimental Set-Up.
6.2.2 Combination of Time-of-Flight Energy Measurements and Coincidence Technique.
6.2.3 Data Processing.
6.3 Experimental Results and Discussion.
6.3.1 LiF Film on Si(100).
6.3.2 Single Crystal of W(110).
6.3.3 Single Crystal of Si(001).
6.4 Conclusions.
References.
7 EMS Measurement of the Valence Spectral Function of Silicon - A Test of Many-body Theory (C. Bowles, A.S. Kheifets, V.A. Sashin, M. Vos, E. Weigold, and F. Aryasetiawan) 83
7.1 Introduction.
7.2 Experimental Details.
7.3 Theory.
7.3.1 Independent Particle Approximation.
7.3.2 Electron Correlation Models.
7.4 Results and Discussions.
7.4.1 Band Structure.
7.4.2 Diffraction Effects.
7.4.3 Many-body Effects.
7.5 Conclusions.
References.
8 Recent Results from (γ, eγ) and Compton Spectroscopy (F. Bell).
8.1 Introduction.
8.2 Experiment.
8.3 Results and Discussion.
8.3.1 Graphite.
8.3.2 Fullerene.
8.3.3 Cu-Ni Alloy.
8.4 Lifetime Effects in Compton Scattering.
8.5 Summary.
References.
9 Theory of (e,2e) Spectroscopy from Ferromagnetic Surfaces (R. Feder and H. Gollisch).
9.1 Introduction.
9.2 Concepts and Formalism.
9.3 Spin and Spatial Selection Rules.
9.4 Numerical Results for Fe(110).
References.
10 Ab-initio Calculations of Charge Exchange in Ion-surface Collisions: An Embedded-cluster Approach (L. Wirtz, M. Dallos, H. Lischka, and J. Burgdorfer).
10.1 Introduction.
10.2 Convergence of the Density of States as a Function of Cluster Size.
10.3 Going beyond Hartree-Fock.
10.4 Convergence of Potential Energy Curves as a Function of Cluster Size.
10.5 Conclusions.
References.
11 Coincident Studies on Electronic Interaction Mechanisms during Scattering of Fast Atoms from a LiF(001) Surface (H. Winter).
11.1 Introduction.
11.2 Experimental Developments.
11.2.1 Energy Loss Spectroscopy via Time-of-Flight.
11.2.2 Electron Number Spectra.
11.3 Coincident TOF and Electron Number Spectra.
11.3.1 Studies on Near-Threshold Behavior.
11.4 Model for Electronic Excitation and Capture Processes during Scattering of Atoms from Insulator Surfaces.
11.5 Summary and Conclusions.
References.
12 Many-body Effects in Auger-Photoelectron Coincidence Spectroscopy (M. Ohno).
12.1 Introduction.
12.2 APECS Spectrum.
12.3 Shakeup/down and Coincidence Photoelectron Spectrum.
12.4 Coincidence L3 Photoelectron Line of Cu Metal.
12.5 Concluding Remarks.
References.
13 Auger-Photoelectron Coincidence Spectroscopy (APECS) of Transition Metal Compounds (R.A. Bartynski, A.K. See, W.-K. Siu, and S.L. Hulbert).
13.1 Introduction.
13.2 Experimental Aspects.
13.3 Results and Discussion.
13.4 Conclusions.
References.
14 Relevance of the Core Hole Alignment to Auger-Photoelectron Pair Angular Distributions in Solids (G. Stefani, R. Gotter, A. Ruocco, F. Offi, F. Da Pieve, A. Verdini, A. Liscio, S. Iacobucci, Hua Yao, and R. Bartynski).
14.1 Introduction.
14.2 AR-APECS Two Step Model.
14.2.1 Atomic Core Ionization and Relaxation.
14.2.2 Diffraction from Crystal Lattice.
14.3 Experimental Results.
14.3.1 Angular Discrimination.
14.3.2 Energy Discrimination.
14.3.3 Surface Sensitivity.
14.4 Conclusions.
References.
15 Auger-Photoelectron Coincidence Spectroscopy Studies from Surfaces (S.M. Thurgate, Z.-T. Jiang, G. van Riessen, and C. Creagh).
15.1 Introduction.
15.2 APECS Experiments.
15.3 Applications.
15.3.1 Broadening of Cu 2p3/2.
15.3.2 Broadening of Ag 3d5/2.
15.3.3 Disorder Broadening.
15.4 Conclusions .
References.
16 Development of New Apparatus for Electron-Polar-Angle-Resolved-Ion Coincidence Spectroscopy and Auger-Photoelectron Coincidence Spectroscopy (K. Mase, E. Kobayashi, and K. Isari).
16.1 Introduction.
16.2 EICO Analyzer Using a Coaxially Symmetric Electron Energy Analyzer and a Miniature Time-of-Flight Ion Mass Spectrometer (TOF-MS).
16.2.1 Coaxially Symmetric Electron Energy Analyzer 「46」.
16.2.2 Miniature Time-of-Flight Ion Mass Spectrometer (TOF-MS) 「47」.
16.2.3 EICO Apparatus Using a Coaxially Symmetric Mirror Analyzer and a Miniature TOF-MS 「14」.
16.3 EICO Analyzer Using a Coaxially Symmetric Mirror Analyzer and a Miniature Polar-Angle-Resolved TOF-MS 「47」.
16.3.1 Miniature Polar-Angle-Resolved TOF-MS with Three Concentric Anodes 「47」.
16.3.2 Electron-Polar-Angle-Resolved-Ion Coincidence Apparatus 「47」.
16.4 APECS Apparatus Using a Coaxially Symmetric Mirror Analyzer and a Miniature CMA.
16.4.1 Introduction.
16.4.2 Miniature CMA「56」.
16.4.3 New APECS Apparatus「56」.
16.4.4 Application to Auger-Photoelectron Coincidence Spectroscopy 「56」.
16.5 Conclusions.
References.
Appendix.
Color Figures.
Index.